
Supplementary Note 1. Selection of capture sequences for direct capture Perturb-seq and 
construction of sgRNA expression plasmids.  
 
To design capture sequences, we considered three important criteria: (1) the presence of these sequences 
in sgRNAs (to allow for primer annealing during RT) should not compromise CRISPR activity, (2) these 
sequences should facilitate robust and specific barcoding of targeted RNAs, and (3) addition of target-
specific primers carrying the reverse complement of these sequences to single-cell reactions should not 
interfere with the generation of gene expression profiles. To identify promising capture sequences for our 
3' scRNA-seq platform, we used CRISPRi in K562 cells to screen candidate sequences. We assessed 
effects on guide activity conferred by incorporation of candidate sequences into one of two positions in 
guide constant regions: in stem loop 2 or at the 3' end (Supplementary Fig. 1c,d). In agreement with 
previous observations1, we found that extra sequence in the loop region of the CR1 constant region2,3 
minimally impacted guide activity, while incorporation of extra sequence near the 3' end often decreased 
activity (Supplementary Fig. 1d). We chose two capture sequences, capture sequence 1 (cs1) and capture 
sequence 2 (cs2), to evaluate for direct capture Perturb-seq because incorporation of either cs1 into the 
loop of CR1 (CR1cs1) and cs2 at the 3' end of CR1 (CR1cs2) does not compromise guide activity 
(Supplementary Fig. 1c,e). We refer to guides carrying these constant regions as sgRNA-CR1cs1 and 
sgRNA-CR1cs2. Notably, we found that while the position of cs2 is interchangeable, incorporating cs1 at the 
3' end decreases guide activity (Supplementary Fig. 1f). Therefore, we strongly recommend against the 
use of sgRNAs with cs1 at the 3' end. Of note, guides carrying our optimized capture sequences can also 
be used for 5' direct capture. To demonstrate this, we performed 5' direct capture with sgRNA-CR1cs1 using 
a guide-specific RT primer (oJR161) which contains the reverse compliment of cs1 (Fig. 1c,d and 
Supplementary Fig. 2a,c,d,h, 3a). 

In another iteration of 5' direct capture Perturb-seq (Fig. 1b, Supplementary Note 4), we designed 
a guide-specific RT primer (oJR160) to target a sequence present within standard guide constant regions. 
Notably, we designed this primer to bind across many commonly-used guide variants, making our approach 
amenable to screening across Streptococcus pyogenes Cas9 (spCas9) perturbation systems, including 
those with modified guide libraries such as SAM-based CRISPR activation (CRISPRa)1. In principle, this 
approach is also readily adaptable for use with guides from other species and for other classes of Cas 
proteins.  

We constructed many sgRNA expression plasmids to evaluate the effects of incorporating different 
capture sequences into the constant regions of sgRNAs (Supplementary Fig. 1d, Supplementary Table 
1). Among these are vectors pAX064-pAX099, pBA896, pBA899-pBA904, and pBA970, which encode 
GFP-targeting sgRNAs (EGFP-NT2 targeting region, 5'-GACCAGGATGGGCACCACCC-3')4 with variants 
of the constant region sequence CR1. As described above, these variants contain capture sequences at 
the 3' end (prior to the terminating poly-T tract) or within the loop region of the so-called “stem loop 2” 
(Supplementary Fig. 1c). Loop modified constant regions also contain an extension to the stem region as 
found in sgRNA 2.01. To construct these vectors, we replaced the sgRNA constant region sequence in pU6-
sgRNA EF1Alpha-puro-T2A-BFP (Addgene, #60955) with our modified variants. More specifically, to make 
pAX064-pAX099 (Supplementary Table 1), we inserted synthesized CR1 variants by Gibson assembly 
using the BstXI and XhoI sites of the parental vector. For pBA896, pBA899-pBA904 and pBA970 
(Supplementary Table 1), synthesized constant region variants were inserted using BlpI and XhoI. Vectors 
pBA900 and pBA904 contain sgRNA-CR1cs2 and sgRNA-CR1cs1, respectively. 

To construct our dual-guide expression vectors, we made and tested an additional six sgRNA 
constant region variants using published constant region sequences CR2 and CR32 (Supplementary Fig. 
5a). These are encoded in pJR73-pJR78 (cloned as described above for pAX064-pAX099). Using GFP 
depletion as a readout of sgRNA activity, we determined that all of these new variants maintained high 
CRISPRi activity (Supplementary Fig. 5a). For downstream dual-guide Perturb-seq experiments, we 
constructed guides with two variant constant regions, CR3 with cs1 in stem loop 2 (CR3cs1) and CR2 with 
cs2 at the 3' end (CR2cs2), and paired them with sgRNA-CR1cs1 in dual-guide vectors. This design, using 
distinct constant region variants in positions A and B, was motivated by previously published multi-guide 
vector system2 and serves to minimize intramolecular recombination between guide sequences during 
lentiviral transduction. We refer to these dual guide vector configurations as CR3cs1/ CR1cs1 and CR2cs2/ 
CR1cs1. 

To test capture of our dual-guide vector expressed sgRNAs, we performed direct capture Perturb-
seq with our dual-guide vectors. At a constant sequencing depth, we found that sgRNA-CR3cs1 produced 



10-fold higher index capture than sgRNA-CR2cs2 (sgRNA-CR3cs1 median of 776 UMIs/cell; sgRNA-CR2cs2 
median of 74 UMIs/cell) (Supplementary Fig. 5b). These results are consistent with our observations from 
single-guide sgRNA-CR1cs2 vectors (Supplementary Fig. 2a) that 3' guide modification is more 
destabilizing than modification of the loop. 
 Finally, we also constructed two CROP-seq vectors to use as controls in our GFP-depletion assay 
(Supplementary Fig. 1d). These are pBA950 (labeled as “CROP-seq modified for CRISPRi”) and pBA960 
(labeled as “CROP-seq”). These vectors were derived from CROPseq-Guide-Puro (Addgene, #86708) as 
follows: First, an intermediate vector (pBA948) was constructed by replacing the existing selectable marker 
in CROPseq-Guide-Puro with BFP (synthesized dsDNA inserted by Gibson assembly using PstI and MluI). 
Then, pBA960 was made by programming the encoded sgRNA with EGFP-NT2, and pBA950 was made 
by replacing the entire human U6-driven sgRNA expression cassette with the sgRNA expression cassette 
from pU6-sgRNA EF1Alpha-puro-T2A-BFP (synthesized dsDNA inserted between PpuMI and NcoI by 
Gibson assembly). This cassette is driven by a modified mouse U6 promoter and encodes a BlpI-containing 
sgRNA(F+E) programmed with EGFP-NT2. To allow cloning of pBA950, a 21 bp repeat outside of the 
lentiviral LTRs was also removed.  
 
  



Supplementary Note 2. Cloning single-guide direct capture Perturb-seq libraries. 
 
For our single-guide direct capture Perturb-seq experiments, we made four CRISPRi libraries: the UPR 
GBC, UPR sgRNA-CR1cs1, UPR sgRNA-CR1cs2, and iPSC sgRNA-CR1cs1 libraries (Supplementary 
Tables 2, 3). Each of these was constructed with one of three guide constant regions: our parental 
constant region CR1 (as in pU6-sgRNA EF1Alpha-puro-T2A-BFP), CR1 with cs1 inserted into stem loop 
2, or cs2 appended to the 3' end (Supplementary Note 1). We made these libraries by cloning target 
seqeunce-containing inserts (annealed oligos from IDT with BstXI/BlpI overhangs) into pBA571, which is 
the Perturb-seq GBC library2, or one of two expression vectors, pBA900 (CR1cs2) or pBA904 (CR1cs1) 
(Supplementary Note 1) after digestion with BstXI and BlpI 
(https://weissmanlab.ucsf.edu/links/sgRNACloningProtocol.pdf). Library vectors were then clonally 
isolated and verified by Sanger sequencing of the protospacer region and, for pBA571-derived vectors, 
the corresponding GBC. Notably, pBA571-derived vectors encode guide expression cassettes in the 
opposite orientation to those in pBA900 and pBA904. 
  



Supplementary Note 3. Protocol for 5' direct capture Perturb-seq of unmodified sgRNAs. 
 
5' direct capture Perturb-seq platform is suitable for use with standard sgRNA sequences (no engineered 
capture sequence). Although oJR160 should anneal to most spCas9 perturbation systems, a wide variety 
of sgRNA variants are currently in use, so it is necessary to check oJR160 compatibility before proceeding. 
Additionally, if running multiple lanes on the 10x Genomics Chromium Controller, oJR165 variants with 
unique i7 indices will be necessary to demultiplex libraries during sequencing. 
 
This protocol follows the Chromium Single Cell V(D)J Reagent Kits User Guide (10x Genomics, 
CG000086). The Chromium Single Cell 3' Reagent Kits v3 User Guide with Feature Barcoding technology 
for CRISPR screening (10x Genomics, CG000184) serves as a reference for the cDNA SPRI cleanup. 
 
Primer designs for 5' direct capture Perturb-seq: 

Primer ID Primer sequence (5' to 3') 
oJR160 

(RT primer) 
Design: 10X sequence–guide annealing 
AAGCAGTGGTATCAACGCAGAGTACCAAGTTGATAACGGACTAGCC 

oJR163 
(Amplificati
on primer) 

Design: P5–TruSeq Read 1 / Index 2 (on bead sequence) 
AATGATACGGCGACCACCGAGATCTACACTCTTTCCCTACACGACGCTCTTCCGATCT 

oJR165 
(Amplificati
on primer) 

Design: P7–i7 index–Nextera Read 2/Index 1–Shared Nextera Read 2/Annealing–
annealing region  
CAAGCAGAAGACGGCATACGAGATAGGAGTCCGTCTCGTGGGCTCGGAGATGTGTAT
AAGAGACAGAGTACCAAGTTGATAACGGACTAGCC 

 
1) Perform droplet capture with the 10x Genomics Chromium Single Cell V(D)J Reagent Kits. 

Prior to droplet formation, we add oJR160 (guide-specific RT primer) to the RT Master Mix. We add 5 
pmols oJR160 (0.5 uL of 10 uM) directly to the 68.3 uL of RT Master Mix used for each 10x lane.  
 

2) cDNA amplification. oJR160 has an adapter identical to the adapter sequence on the Poly-dT RT 
Primer (10x Genomics, PN-2000007). This adapter servers as a primer binding site for the Non-
Poly(dT) primer (10x Genomics, PN-220106) during cDNA amplification, and thus allows amplification 
of reverse transcribed guides to occurs concurrently with standard cDNA amplification. 
 

3) cDNA cleanup and separation of cDNA libraries fractions. For reference, see Supplementary Fig. 
1g (schematic overview) and step 2.3 of our 3' direct capture Perturb-seq protocol (10x Genomics, 
CG000184) which generally mirrors the 5' direct capture workflow. Briefly, guide-containing cDNA 
amplicons (168 bp) can be enriched by size selection. To do this, we perform a 0.6X left-sided SPRI 
cleanup reaction and collect both the beads (which carry material for preparing the gene expression 
library below in step 7) and the supernatant (which is enriched for guide-derived cDNA amplicons). Use 
the supernatant, we complete a 0.6X-1.2X double-sided SPRI selection in order to collect the guide-
containing fraction and proceed to step 4.  
 

4) Quantify the guide-enriched cDNA fraction. The expected size of the guide-containing cDNA 
amplicons (with adapters, CBC, UMI) is 168 bp. In K562 cells, a peak is apparent in traces produced 
by a Bioanalyzer High Sensitivity DNA Analysis (Agilent) (representative plot below). To determine how 
much template to add to the specific amplification PCR in the next step, we quantify the mass of 145 
bp to 1000 bp products in the sample.  
 
Sample Bioanalyzer trace, with peak at 168 bp: 
 
 
 
 
 
 



5) Specific amplification of guide-containing cDNA amplicons. Using 5 ng of the guide-enriched 
cDNA fraction per reaction, we perform 4 PCRs with KAPA HiFi ReadyMix and 0.6 uM of primers 
oJR163 and oJR165, as below. We purify the resulting guide (index) sequencing libraries with a 0.8X 
SPRI cleanup reaction to remove primers and elute in 40 uL.  

 

Components Volume for 1 reaction (uL) Volume for 4.25 reactions 
(uL) 

10 uM P5-primer 3 12.75 
10 uM P7-primer 3 12.75 

Template DNA (5 ng) depends on template 
concentration 

depends on template 
concentration 

2X Kapa HiFi Master Mix 25 106.25 

Water depends on template 
concentration 

depends on template 
concentration 

Total 50 212.5 
 

Step Time Temperature Cycles 
Initial Denaturation 3 minutes 95°C 1 

Denature 15 seconds 98°C 12X 
Anneal/Elongate 10 seconds 70°C  
Final Elongation 1 minutes 72°C 1 

Hold hold 4°C 1 
  
6) Quantification of the final guide (index) sequencing libraries. We measure the concentration of the 

final guide sequencing libraries using a Bioanalyzer High Sensitivity DNA Analysis (Agilent) at a 1:10 
dilution. The expected size of the peak is 250 bp. 
 

7) Prepare the corresponding gene expression library. Gene expression libraries are prepared from 
material collected in step 3. For this, refer to the Chromium Single Cell V(D)J Reagent Kits User Guide 
(10x Genomics, CG000086).  
 

8) Sequencing. We sequence the guide (index) sequencing libraries as ~10% spike-ins added to gene 
expression libraries. The Illumina Read 2 will sequence the sgRNA constant region before sequencing 
the sgRNA targeting region. Therefore, it is always necessary to sequence the sgRNA library alongside 
a higher diversity library (such as the gene expression library) or with PhiX. We recommend using a 
Read 2 of 98 bp to ensure that the read sequences through the sgRNA targeting region. 

  



Supplementary Note 4. Cloning dual-guide direct capture Perturb-seq libraries. 
 
Dual-guide direct capture libraries were constructed according to the schematic depicted in Fig. 2a. Library 
components included the parental vector pJR85 (pBA904 with two BsmBI sites removed), a synthesized 
oligonucleotide insert (either CR3cs1-hU6 or CR2cs2-hU6), and a dual-guide RNA targeting sequence 
oligonucleotide pool (including verified PCR adapter sequences available at 
https://weissmanlab.ucsf.edu/CRISPR/CRISPR.html). Library oligo pools were ordered from Twist 
Biosciences with the following overall structure:  
 
CR3cs1/ CR1cs1 library: 5'–PCR adapter–CCACCTTGTTG–protospacer A–
GTTTCAGAGCGAGACGTGTTTGATCTCGGGCCGTCTCAGAAACATG–protospacer B–
GTTTAAGAGCTAAGCTG–PCR adapter–3' 
 
CR2cs2/ CR1cs1 library: 5'–PCR adapter–CCACCTTGTTG–protospacer A–
GTTTGAGAGCGAGACGTGTTTGATCTCGGGCCGTCTCAGAAACATG–protospacer B–
GTTTAAGAGCTAAGCTG–PCR adapter–3' 
 
Briefly, dual-guide libraries were constructed by PCR-amplifying oligo pools. The resulting amplicons were 
BstXI/BlpI digested, gel extracted, and ligated into a similarly digested pJR85. The ligation products were 
then transformed into bacteria and amplified at scale to generate intermediate libraries (>100 bacterial 
colonies per library element). In parallel, either the CR3cs1-hU6 insert (pJR89) or the CR2cs2-hU6 insert 
(pJR88) were ligated into the intermediate library after BsmBI-digestion. The final dual-guide libraries were 
verified via NGS sequencing. 
  



Supplementary Note 5. Design considerations for hybridization probes used to enrich targeted gene 
expression panels from scRNA-seq libraries.  
 
To enrich select molecules from single-cell gene expression libraries, we used a hybridization-based 
protocol with carefully designed probes. These probes bind to cDNA sequences present in post-
fragmentation, amplified sequencing libraries, which contain relatively small fragments derived from full-
length cDNAs (~300 bp). We performed these enrichments on gene expression libraries prepared 
according to the Chromium Single Cell 3' Reagent Kits v3 User Guide (10x Genomics, CG000184). 
Although 3' scRNA-seq primarily captures the 3' end of transcripts, reads at other locations throughout the 
transcript are also common. Therefore, rather than rely on the assumption that reads come from annotated 
3' ends, we took a data-driven approach and, using the 978 landmark L1000 genes5, designed probes using 
the following procedure: 
 
1) For each gene, we determine all transcript isoforms that account for >80% of reads in a K562 RNA-seq 

dataset (https://www.encodeproject.org/files/ENCFF717EVE/).  
 

2) For each of these transcripts, we then perform a peak finding procedure to target the most common 
cDNA-represented sequences in cell-type matched 3' scRNA-seq data with probes. We align all 
scRNA-seq reads within the transcript and smooth the read density using a median filter. We then find 
a region that contains >80% of reads, pad the selected region with 25 bp on the 5' end and 200 bp on 
the 3' end, and extract this sequence to target with probes. For transcripts where the resulting sequence 
is >2 kb (e.g. if there is an extraneous peak of density early in a transcript), we threshold the sequence 
on the 5' end to make a 2 kb peak. For transcripts with insufficient sequencing coverage for empirical 
design, we simply target 300 bp starting at the annotated 3' end.  

 
3) Next, for each gene, we compare the regions chosen across different transcripts. If one region is a strict 

subset of another, then we eliminate the smaller region. 
 

4) Lastly, we use Twist Biosciences to design and synthesize 120 bp probes against the targeted 
sequence.  

  



Supplementary Note 6. Details of data analysis. 
 
Low UMI count / inviable cell removal. Droplet-based scRNA-seq data often contain small subpopulations 
of cells with low UMI counts, likely representing droplets that underwent inefficient reverse transcription or 
encapsulated only fragmented cellular debris. In our UPR experiment with 5' capture of standard sgRNAs, 
there was an obvious subpopulation of ~150 (~2%) cells with low UMI counts. These cells were removed 
by manually thresholding the number of UMIs per CBC. For analysis in Figure 2g, we also removed 
apoptotic cells. For this, we used a random forest regressor that was trained to recognize inviable cells 
using published data2.  
 
Hierarchical clustering of UPR perturbations in Figure 1e and cophenetic correlation. For Figure 1e, we 
generated pseudo-bulk RNA-seq profiles for each guide evaluated on each of three Perturb-seq platforms 
(see Methods). We then calculated guide-guide Spearman’s rank correlation matrices for each of those 
datasets. We optimally ordered clusters to minimize the distance between successive leaves. To enable 
visual analysis, we generated heatmaps for each correlation matrix. Genes are ordered according to 
hierarchical clustering of the GBC data (Ward’s method). To quantitatively compare the similarities between 
correlation matrices, we calculated a cophenetic correlation (the Pearson correlation of all pairwise 
similarities between perturbation profiles across datasets).  
 
Correlation of average expression profiles in Supplementary Figure 3b,c. Supplementary Figure 3b 
presents Pearson correlations of pseudo-bulk RNA-seq profiles (see Methods) generated on different 
Perturb-seq platforms with guides containing the same targeting sequence. For this analysis, we calculated 
average expression profiles using only the top 100 most differentially expressed genes per perturbation, 
which we determined using random forest classifiers. Specifically, for each guide, we trained a random 
forest classifier (scikit-learn extremely randomized trees with 1000 trees in the forest) to predict the 
perturbation status of a cell, using as features the normalized expression profile (see Methods) of each cell 
for genes with a mean expression >0.5 UMI per cell. For each guide, the top 100 genes whose expression 
level could be used to separate perturbed and unperturbed cells in GBC Perturb-seq were considered 
differentially expressed. The advantage of this approach is that we do not employ a strict cutoff and 
therefore can assess the similarity of expression profiles across platforms regardless of the strength of the 
perturbation. However, this strategy always returns 100 genes per perturbation without regard for statistical 
significance, and thus for perturbations without robust transcriptional phenotypes, it may return genes that 
are not truly differentially expressed. This may deflate the apparent average correlation between platforms. 
To explore this possibility, we asked how the number of differentially expressed genes, as determined by a 
second procedure, related to the degree of correlation between expression profiles (Supplementary Fig. 
3c). Specifically, for each perturbation we performed a two-sample Kolmogorov–Smirnov test per gene and 
considered genes differentially expressed when the Benjamini/Yekutieli FDR-corrected p<0.01 for GBC 
Perturb-seq. As expected, we found that the number of differentially expressed genes was associated with 
the degree of correlation (Spearman’s rank correlation: r=0.84, p=2e-9 for 3' sgRNA-CR1cs1 capture; 
r=0.86, p=5e-10 for 5' sgRNA capture). 
 
Delineation of genetic regulons in Figure 1f. Previously, we used Perturb-seq to delineate genes regulated 
by the three signaling branches of the UPR, which are controlled by IRE1α, PERK, and ATF65. In the UPR 
Perturb-seq experiments presented herein, we expected these same genes to be differentially expressed 
and to meaningfully covary based on differential UPR branch activation. We therefore used these genes to 
test the ability of direct capture Perturb-seq to cluster similar genetic regulons. To this end, we used the 
normalized expression profiles (see Methods) of all cells from our new UPR experiments to calculate gene-
gene Spearman’s rank correlation matrices for this gene set. We then quantitatively assessed the similarity 
of the clustering produced by calculating the cophenetic correlation, the Pearson correlation of all pairwise 
similarities between genes, across platforms (GBC and both 3' and 5' direct capture Perturb-seq). To 
generate a visual representation of the data, we next applied Ward’s method to the coexpression matrix to 
hierarchically cluster genes, where the dendrograms tend to place coregulated genes near one another 
(Fig. 1f). Clustering revealed genes grouped by branch regulation, in agreement with our previous work. 
 
Single-cell analysis in Figure 1g and Supplementary Figure 3d. To determine the single-cell performance 
of direct capture Perturb-seq, we again employed random forest classifiers. Specifically, for each 



perturbation, we split our data into training (80%) and testing (20%) sets and, to separate perturbed and 
unperturbed (NegCtrl3) cells, trained a random forest classifier on normalized expression profiles (see 
Methods). We then tested the accuracy (balanced for perturbed and unperturbed cells) of our classifiers on 
the remaining 20% of cells. In this regime, the accuracies of our random forest classifiers can serve as 
proxies for the single-cell performance of Perturb-seq across platforms, because for strong genetic 
perturbations, we generally expect perturbed cells to be transcriptionally distinguishable from unperturbed 
cells. Using a Wilcoxon two-sided signed-rank test, we then tested for differences in classification accuracy 
across platforms and failed to reject the null hypothesis that direct capture Perturb-seq performs 
comparably to GBC Perturb-seq (Wilcoxon two-sided signed-rank test: p=0.2 for 3' sgRNA-CR1cs1 capture; 
p=0.6 for 5' sgRNA capture) (Supplementary Figure 3d). Next, to visually inspect single cell performance, 
we selected a subset of cells bearing strongly perturbative guides, specifically those targeting SEC61A1, 
SEC61G, ATP5B, MRPL39, CARS, HARS, and sgNegCtrl3. We reduced dimensionality by computing 10 
independent components (using FastICA) followed by t-distributed stochastic neighbor embedding (t-sne) 
to project cells into two dimensions (Fig. 1g). 
 
Cell cycle analysis in Figure 2d,f and Supplementary Figure 5d. To determine the most likely cell cycle 
phase of each cell, we used scores derived from panels of cell cycle markers as previously described2. This 
allowed us to calculate the fraction of cells in each cell cycle phase and the relative (ie. z-scored with respect 
to control cells) occupancy of cells in each stage of the cell cycle for subpopulations of cells. 
 
Linear epistasis model and gene expression heatmaps in Figure 2e,h. We sought to determine the extent 
to which each dual target gene phenotype (ab) could be explained by independent repression of each 
single gene (a and b). For this, we used a previously described approach6. Specifically, we decomposed 
the transcriptional changes caused by dual perturbations into components explained by each of single 
perturbations by fitting a robust Theil-Sen regressor (scikit learn TheilSenRegressor with parameters 
fit_intercept=False, max_subpopulation=1e5, max_iter=1000, random_state=1000): dab = c1da + c2db + 
e. This model outputs a predicted dual-perturbation phenotype, which can then be compared to the 
observed phenotype. This allows detection of neomorphic behavior (i.e., gene expression changes not 
explained by the phenotype of either single-gene perturbation). To visualize phenotypes from our epistasis 
experiments, as in Figure 2e and 2h, we generated a gene expression heatmap representing 50 genes. 
These were selected in the following manner: First, we determined genes that were differentially expressed 
across cells carrying the double (ab) and single (a or b) perturbations using a random forest classifier as 
previously described6. All genes with a mean expression greater than 0.5 UMI per cell were considered. 
Then, we plotted the 50 genes with the highest predictive power. 
 
FDPS/HUS1 single cell analysis in Figure 2h. To visualize the gene expression changes caused by 
repression of FDPS and HUS1 at the single-cell level, we used uniform manifold approximation and 
projection (UMAP). To do this, we first determined genes that were differentially expressed across cells 
carrying the HUS1/FDPS double and HUS1 or FDPS single perturbations using a random forest classifier. 
All genes with a mean expression greater than 0.1 UMI per cell were considered, and the top 200 genes 
were used to make the projection (parameters: metric=’euclidean’, n_neighbors=10, random_state=100, 
use_pca=True). 
 
Multiplexed sgRNA analysis in Supplementary Figure 6. Multiplexing two sgRNAs into a single expression 
vector has the potential to improve CRISPRi and CRISPRa libraries in two ways: (1) higher probability of 
delivering at least one active guide per cell, and (2) guide synergy. To evaluate the latter, we compared the 
activity of distinct guides targeting the same gene (expressed from our dual guide vector) to the activity of 
the most active single guide in each pair (expressed from our dual guide vector alongside a negative control 
sgRNA) (Supplementary Fig. 6c,d). To rule out effects of steric competition between guides, which may 
occur when guides target nearby genomic sequences, we identified guide pairs in our library that target 
sequences <80bp apart in the genome and tested one guide from each of those pairs with an additional 
guide (sgRNA 3) whose genomic target is >80 bp away (Supplementary Fig. 6e,f). 
 
Analysis of gene expression skew and biased in Supplementary Figure 7a,b. Gene expression is skewed 
and biased by function. To demonstrate the former, we plotted a cumulative density function of gene 
expression (Supplementary Fig. 7a). We generated this plot using scRNA-seq data from K562 cells as 



follows: First, we ordered genes based on their expression level (gene rank). Then, we calculated the total 
fraction of mRNA UMIs accounted for by genes with a rank less than or equal to a given value. To assess 
bias by function, we used gene ontology (GO). For this, we first downloaded the GO SLIM dataset from 
Ensembl BioMart (genome build GRCh38.p13; accession date 10/08/2019). We manually curated a set of 
23 GO terms of moderate size and biological interest, and then for each GO term, we calculated the fraction 
of the genes assigned to that term in each of 10 gene expression bins (determined by sorting all expressed 
genes) (Supplementary Fig. 7b). 
 
Analysis of target enrichment performance Figure 3c-e and Supplementary Figure 7c-h. Figure 3c,d and 
Supplementary Figure 7c-f, depict analysis of scRNA-seq data generated with and without sequencing 
library enrichment (target enrichment) using material from our genetic interaction experiment (1 lane) and 
hybridization baits against the L1000 genes. To collect this data, we deeply sequenced both the unenriched, 
original library (3,517,544,917 reads; sequencing saturation 48%; 252,516 mean reads per cell) and the 
target enriched library (334,745,797 reads; sequencing saturation 62%; 26,445 mean reads per cell). The 
target enriched library was intentionally sequenced to only ~0.1x the depth of the original library because 
the L1000 genes make up 6% of the entire transcriptome. Both sequencing libraries were aligned via Cell 
Ranger and filtered to contain only cells bearing defined sgRNA pairs (n=6349 cells).  

Figure 3e and Supplementary Figure 7g,h depict analysis of scRNA-seq data (n=211,103 cells 
before filtering for guide-identified cells) generated with and without target enrichment using material from 
our multiplexed CRISPRi experiment (16 lanes) and hybridization baits against the L1000 genes 
(unenriched 5,315,226,464 reads; enriched 3,255,486,907 reads). After Cell Ranger alignment, we filtered 
for cells bearing defined sgRNA pairs and identified those that produce significant transcriptional 
phenotypes by performing a two-sided, two-sample Kolmogorov–Smirnov test for each gene, comparing 
perturbed and unperturbed cells. We considered genes differentially expressed when the 
Benjamini/Yekutieli FDR-corrected p<0.001. For perturbations with greater than 10 differentially expressed 
genes, we calculated average pseudo-bulk RNA-seq profiles (see Methods) and then calculated a 
perturbation-perturbation Spearman’s rank correlation matrix. We applied HBDSCAN to cluster 
perturbations based on the whole transcriptome data (parameters: metric='correlation', min_cluster_size=6, 
min_samples=1, cluster_selection_method='eom', alpha=1), and optimally ordered hierarchical clusters to 
minimize the distance between successive leaves (Fig. 3e). Additionally, to quantitatively compare the 
similarity of these correlation matrices, we calculated a cophenetic correlation, the Pearson correlation of 
all pairwise similarities between the unenriched and enriched datasets (visualized in Supplementary Fig. 
7h). 
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